Intro to deep learning

Dr. Janos Gabler, University of Bonn

Lecture 6: Classification via feature extraction

https://github.com/janosg/

Topics

= More numpy features
m Extracting features from a transformer model

m Use them for classification

Motivation

m After today, you can use state of the art transformer models to create
features for your own classifier

= This means you can do high quality sentiment analysis with non-standard
categories

= No GPU needed

m Today we can do 3 tasks in a row (without slides in between) because by

now you have a solid foundation

More numpy
features

Masked numpy arrays

>>> import numpy as np m creating it requires a mask
>>> a = np.ma.array(

(1, 2, 31, m " .data returns unmasked array
. mask=[False, False, True],
e) . .
5 = masked elements are ignored in
masked_array(data=[1, 2, --], Cal.CUlationS.

mask=[False, False, True],

fill value=999999) = masked means, entry in the maskiis

>>> a.data True|

1, 2, 3 mi '
e D = Similar to pandas operations that

>>> a.sum() .
ignore NaNs
3

Masked arrays in higher dimensions

>>> b = np.ma.array(
[[1, 2], [3, 411,

mask=[[True, False], [False, True]],

-

>>> Db

masked_array(
data=[[--, 2],
[31 "]]l
mask=[[True, False],
[False, Truel],
fill value=999999)

>>> b.sum(axis=0)
masked_array(data=[3, 2],
mask=[False,
fill _value=999999)

>>> b.sum(axis=1).data

array([2, 3])

Mask needs to have same shape as
array

Axis argument behaves as normal
If resultis not a scalar, itas a
masked array too

Only access unmasked data if you

know it is safe

Boolean arrays

>>> np.array([1, 0, 1]).astype(bool)
array([True, False, True])

>>> np.array([1, 0, 15]).astype(bool)
array([True, False, True])

>>> np.array([1, -1, 15]).astype(bool)
array([True, True, True])

>>> np.array([True, False, True]).sum()

2

Integers can be converted to bool
= 0 — False

= nonzero — True

For calculations they are implicitly
converted back to ints

= False — 0

= True — 1

Repeating arrays

>>> a = np.array([1, 2, 3]) m Repeat duplicates elements n times

>>> a.repeat(2)

= Without axis, result is flattened
array([1, 1, 2, 2, 3, 3])

o b = np.array([[1, 21, (3, 41]) = Versatile together with reshaping
>>> b.repeat(2) .
= Tip for complex cases:
array([1, 1, 2, 2, 3, 3, 4, 4])]) . .
= Firstintroduce new dimensions
>>> b.repeat(2, axis=1)
via reshaping

array([[1, 1, 2, 2],

[3, 3, 4, 4ll) = Then repeat along these axes

>>> a.reshape(-1, 1).repeat(2, axis=1)

» Always prefer broadcasting over

array([[1, 1], .
[2, 2], repetition!
[3, 311)

Task 1

Feature extraction

Steps for the feature extraction

m Tokenize the entire dataset using DatasetDict.map"

= Write a ‘map compatible function to extract last hidden states
m convert inputs to torch tensors
= evaluate model
= convert output to numpy
m average over unmasked tokens

m (Create arrays we can use in sklearn

Tokenize the entire dataset

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

from datasets import load_dataset
from transformers import AutoTokenizer
ds = load_dataset("rotten_tomatoes")
model_name = "distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
def tokenize(batch):
return tokenizer(batch["text"], padding=True, trun

ds_encoded = ds.map(tokenize, batched=True, batch_size
ds_encoded.column_names

{'train': ['text',6 'label', 'input_ids', 'attention_mask']

'validation': ['text', 'label', 'input_ids', 'attention_m
"test': ['text', 'label', 'input_ids', 'attention_mask']}

= \We did all of this last week

= This is just a condensed summary

Create tiny model inputs to practice

>>> import torch |
>>> batch = ds_encoded["train"][:2]

>>> input_ids = torch.tensor(batch["input_ids"])

>>> input_ids.shape

torch.Size([2, 78])

>>> attention_mask = torch.tensor(batch["attention_mask"]) ®H
>>> attention_mask.shape

torch.Size([2, 78])

"batch has the same format as
what we get when using map " with
‘batched=True on ds_encoded"
"shape[0] is 2 because we have
two tweets

"shape[1] is 78 because thatis
the number of tokens in the longest

tweet

Using the model

>>>
>>>

>>>

>>>

(2,

from transformers import AutoModel
model = AutoModel.from_pretrained(model_name)
with torch.no_grad():
output = model(input_ids, attention_mask)
lhs = output.last_hidden_state.cpu().numpy()
lhs.shape

78, 768)

The shapeis [batch_size ",
‘'n_tokens, "hidden_dim]
"hidden_dim is the model specific
length of the hidden states

Thus, there is one hidden state
vector for each individual token!

use no_grad to save resources

Task 2

Why do we need post-processing?

= Currently, we would get 78 * 768 = 59904 features
= Some of them correspond to padding tokens
= \Want to reduce size and discard invalid information
= Practical solution:

= Average over token dimension

= |gnore rows where attention maskis O

Questions

= Are we allowed to do that?
» \Won't this discard too much information?

m Remember that we are not doing econometrics

Task 3

How to improve performance?

m Experiment with other classification models
m Tune hyperparameters of classification models
= \We have reached a number of features where penalties make sense
= Add features from another transformer model
= Address class imbalance by resampling the data
m Try other post-processing
m Keep first
m Keep last valid

m Free start up coaching from university

= Can get help for many things
= How to develop an idea into a product
= How to select and apply for grants
m | egal advice

s Connect with other founders

https://www.uni-bonn.de/en/research-and-teaching/transfer-center-enacom/transfercenter-enacom?set_language=en

My Startup ldea (Postponed)

= The statistics package of the future
= You talk to the package in natural language
= A model generates high quality code and answers your statistics questions
= Web interface
= No installation needed
= Powerful hardware
= Paired with an open source implementation of modern statistical methods

m Status: Postponed for lack of a full-time co-founder

How Enacom helped me

= Forced me to clarify the vision
= |nformation on funding opportunities

= Practical tips from Jakob

