
Intro to deep learning

Lecture 6: Classification via feature extraction

Dr. Janoś Gabler, University of Bonn

https://github.com/janosg/

Topics
More numpy features

Extracting features from a transformer model

Use them for classification

Motivation
After today, you can use state of the art transformer models to create

features for your own classifier

This means you can do high quality sentiment analysis with non-standard

categories

No GPU needed

Today we can do 3 tasks in a row (without slides in between) because by

now you have a solid foundation

More numpy
features

Masked numpy arrays
creating it requires a mask

.data returns unmasked array

masked elements are ignored in

calculations.

masked means, entry in the mask is

True!

Similar to pandas operations that

ignore NaNs

>>> import numpy as np
>>> a = np.ma.array(
... [1, 2, 3],
... mask=[False, False, True],
...)
>>> a

masked_array(data=[1, 2, --],
 mask=[False, False, True],
 fill_value=999999)

>>> a.data

array([1, 2, 3])

>>> a.sum()

3

` `

Masked arrays in higher dimensions
Mask needs to have same shape as

array

Axis argument behaves as normal

If result is not a scalar, it as a

masked array too

Only access unmasked data if you

know it is safe

>>> b = np.ma.array(
... [[1, 2], [3, 4]],
... mask=[[True, False], [False, True]],
...)
>>> b

masked_array(
 data=[[--, 2],
 [3, --]],
 mask=[[True, False],
 [False, True]],
 fill_value=999999)

>>> b.sum(axis=0)

masked_array(data=[3, 2],
 mask=[False, False],
 fill_value=999999)

>>> b.sum(axis=1).data

array([2, 3])

Boolean arrays
Integers can be converted to bool

0 False

nonzero True

For calculations they are implicitly

converted back to ints

False 0

True 1

>>> np.array([1, 0, 1]).astype(bool)

array([True, False, True])

>>> np.array([1, 0, 15]).astype(bool)

array([True, False, True])

>>> np.array([1, -1, 15]).astype(bool)

array([True, True, True])

>>> np.array([True, False, True]).sum()

2

→

→

→

→

Repeating arrays
Repeat duplicates elements n times

Without axis, result is flattened

Versatile together with reshaping

Tip for complex cases:

First introduce new dimensions

via reshaping

Then repeat along these axes

Always prefer broadcasting over

repetition!

>>> a = np.array([1, 2, 3])
>>> a.repeat(2)

array([1, 1, 2, 2, 3, 3])

>>> b = np.array([[1, 2], [3, 4]])
>>> b.repeat(2)

array([1, 1, 2, 2, 3, 3, 4, 4])

>>> b.repeat(2, axis=1)

array([[1, 1, 2, 2],
 [3, 3, 4, 4]])

>>> a.reshape(-1, 1).repeat(2, axis=1)

array([[1, 1],
 [2, 2],
 [3, 3]])

Task 1
(5 min)

Feature extraction

Steps for the feature extraction
Tokenize the entire dataset using DatasetDict.map

Write a map compatible function to extract last hidden states

convert inputs to torch tensors

evaluate model

convert output to numpy

average over unmasked tokens

Create arrays we can use in sklearn

` `

` `

Tokenize the entire dataset
We did all of this last week

This is just a condensed summary

>>> from datasets import load_dataset
>>> from transformers import AutoTokenizer
>>> ds = load_dataset("rotten_tomatoes")
>>> model_name = "distilbert-base-uncased"
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
>>> def tokenize(batch):
... return tokenizer(batch["text"], padding=True, trun

>>> ds_encoded = ds.map(tokenize, batched=True, batch_size
>>> ds_encoded.column_names

{'train': ['text', 'label', 'input_ids', 'attention_mask']
 'validation': ['text', 'label', 'input_ids', 'attention_m
 'test': ['text', 'label', 'input_ids', 'attention_mask']}

Create tiny model inputs to practice
batch has the same format as

what we get when using map with

batched=True on ds_encoded

shape[0] is 2 because we have

two tweets

shape[1] is 78 because that is

the number of tokens in the longest

tweet

>>> import torch
>>> batch = ds_encoded["train"][:2]
>>> input_ids = torch.tensor(batch["input_ids"])
>>> input_ids.shape

torch.Size([2, 78])

>>> attention_mask = torch.tensor(batch["attention_mask"])
>>> attention_mask.shape

torch.Size([2, 78])

` `

` `

` ` ` `

` `

` `

Using the model
The shape is [batch_size ,

n_tokens , hidden_dim]

hidden_dim is the model specific

length of the hidden states

Thus, there is one hidden state

vector for each individual token!

use no_grad to save resources

>>> from transformers import AutoModel
>>> model = AutoModel.from_pretrained(model_name)
>>> with torch.no_grad():
... output = model(input_ids, attention_mask)
... lhs = output.last_hidden_state.cpu().numpy()
>>> lhs.shape

(2, 78, 768)

` `

` ` ` `

` `

` `

Task 2
(8 min)

Why do we need post-processing?
Currently, we would get 78 * 768 = 59904 features

Some of them correspond to padding tokens

Want to reduce size and discard invalid information

Practical solution:

Average over token dimension

Ignore rows where attention mask is 0

Questions
Are we allowed to do that?

Won’t this discard too much information?

Remember that we are not doing econometrics

Task 3
(8 min)

Task 4
(10 min)

Task 5
(10 min)

How to improve performance?
Experiment with other classification models

Tune hyperparameters of classification models

We have reached a number of features where penalties make sense

Add features from another transformer model

Address class imbalance by resampling the data

Try other post-processing

Keep first

Keep last valid

Enacom
Free start up coaching from university

Can get help for many things

How to develop an idea into a product

How to select and apply for grants

Legal advice

Connect with other founders

https://www.uni-bonn.de/en/research-and-teaching/transfer-center-enacom/transfercenter-enacom?set_language=en

My Startup Idea (Postponed)
The statistics package of the future

You talk to the package in natural language

A model generates high quality code and answers your statistics questions

Web interface

No installation needed

Powerful hardware

Paired with an open source implementation of modern statistical methods

Status: Postponed for lack of a full-time co-founder

How Enacom helped me
Forced me to clarify the vision

Information on funding opportunities

Practical tips from Jakob

