
Intro to deep learning

Lecture 6: Classi�cation via feature extraction

Dr. Janoś Gabler, University of Bonn

https://github.com/janosg/

Topics
More numpy features

Extracting features from a transformer model

Use them for classi�cation

Motivation
After today, you can use state of the art transformer models to create

features for your own classi�er

This means you can do high quality sentiment analysis with non-standard

categories

No GPU needed

Today we can do 3 tasks in a row (without slides in between) because by

now you have a solid foundation

More numpy
features

Masked numpy arrays
creating it requires a mask

.data returns unmasked array

masked elements are ignored in

calculations.

masked means, entry in the mask is

True!

Similar to pandas operations that

ignore NaNs

>>> import numpy as np
>>> a = np.ma.array(
... [1, 2, 3],
... mask=[False, False, True],
...)
>>> a

masked_array(data=[1, 2, --],
 mask=[False, False, True],
 fill_value=999999)

>>> a.data

array([1, 2, 3])

>>> a.sum()

3

` `

Masked arrays in higher dimensions
Mask needs to have same shape as

array

Axis argument behaves as normal

If result is not a scalar, it as a

masked array too

Only access unmasked data if you

know it is safe

>>> b = np.ma.array(
... [[1, 2], [3, 4]],
... mask=[[True, False], [False, True]],
...)
>>> b

masked_array(
 data=[[--, 2],
 [3, --]],
 mask=[[True, False],
 [False, True]],
 fill_value=999999)

>>> b.sum(axis=0)

masked_array(data=[3, 2],
 mask=[False, False],
 fill_value=999999)

>>> b.sum(axis=1).data

array([2, 3])

Boolean arrays
Integers can be converted to bool

0 False

nonzero True

For calculations they are implicitly

converted back to ints

False 0

True 1

>>> np.array([1, 0, 1]).astype(bool)

array([True, False, True])

>>> np.array([1, 0, 15]).astype(bool)

array([True, False, True])

>>> np.array([1, -1, 15]).astype(bool)

array([True, True, True])

>>> np.array([True, False, True]).sum()

2

→

→

→

→

Repeating arrays
Repeat duplicates elements n times

Without axis, result is �attened

Versatile together with reshaping

Tip for complex cases:

First introduce new dimensions

via reshaping

Then repeat along these axes

Always prefer broadcasting over

repetition!

>>> a = np.array([1, 2, 3])
>>> a.repeat(2)

array([1, 1, 2, 2, 3, 3])

>>> b = np.array([[1, 2], [3, 4]])
>>> b.repeat(2)

array([1, 1, 2, 2, 3, 3, 4, 4])

>>> b.repeat(2, axis=1)

array([[1, 1, 2, 2],
 [3, 3, 4, 4]])

>>> a.reshape(-1, 1).repeat(2, axis=1)

array([[1, 1],
 [2, 2],
 [3, 3]])

Task 1
(5 min)

Feature extraction

Steps for the feature extraction
Tokenize the entire dataset using DatasetDict.map

Write a map compatible function to extract last hidden states

convert inputs to torch tensors

evaluate model

convert output to numpy

average over unmasked tokens

Create arrays we can use in sklearn

` `

` `

Tokenize the entire dataset
We did all of this last week

This is just a condensed summary

>>> from datasets import load_dataset
>>> from transformers import AutoTokenizer
>>> ds = load_dataset("rotten_tomatoes")
>>> model_name = "distilbert-base-uncased"
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
>>> def tokenize(batch):
... return tokenizer(batch["text"], padding=True, trun

>>> ds_encoded = ds.map(tokenize, batched=True, batch_size
>>> ds_encoded.column_names

{'train': ['text', 'label', 'input_ids', 'attention_mask']
 'validation': ['text', 'label', 'input_ids', 'attention_m
 'test': ['text', 'label', 'input_ids', 'attention_mask']}

Create tiny model inputs to practice
batch has the same format as

what we get when using map with

batched=True on ds_encoded

shape[0] is 2 because we have

two tweets

shape[1] is 78 because that is

the number of tokens in the longest

tweet

>>> import torch
>>> batch = ds_encoded["train"][:2]
>>> input_ids = torch.tensor(batch["input_ids"])
>>> input_ids.shape

torch.Size([2, 78])

>>> attention_mask = torch.tensor(batch["attention_mask"])
>>> attention_mask.shape

torch.Size([2, 78])

` `

` `

` ` ` `

` `

` `

Using the model
The shape is [batch_size ,

n_tokens , hidden_dim]

hidden_dim is the model speci�c

length of the hidden states

Thus, there is one hidden state

vector for each individual token!

use no_grad to save resources

>>> from transformers import AutoModel
>>> model = AutoModel.from_pretrained(model_name)
>>> with torch.no_grad():
... output = model(input_ids, attention_mask)
... lhs = output.last_hidden_state.cpu().numpy()
>>> lhs.shape

(2, 78, 768)

` `

` ` ` `

` `

` `

Task 2
(8 min)

Why do we need post-processing?
Currently, we would get 78 * 768 = 59904 features

Some of them correspond to padding tokens

Want to reduce size and discard invalid information

Practical solution:

Average over token dimension

Ignore rows where attention mask is 0

Questions
Are we allowed to do that?

Won’t this discard too much information?

Remember that we are not doing econometrics

Task 3
(8 min)

Task 4
(10 min)

Task 5
(10 min)

How to improve performance?
Experiment with other classi�cation models

Tune hyperparameters of classi�cation models

We have reached a number of features where penalties make sense

Add features from another transformer model

Address class imbalance by resampling the data

Try other post-processing

Keep �rst

Keep last valid

Enacom
Free start up coaching from university

Can get help for many things

How to develop an idea into a product

How to select and apply for grants

Legal advice

Connect with other founders

https://www.uni-bonn.de/en/research-and-teaching/transfer-center-enacom/transfercenter-enacom?set_language=en

My Startup Idea (Postponed)
The statistics package of the future

You talk to the package in natural language

A model generates high quality code and answers your statistics questions

Web interface

No installation needed

Powerful hardware

Paired with an open source implementation of modern statistical methods

Status: Postponed for lack of a full-time co-founder

How Enacom helped me
Forced me to clarify the vision

Information on funding opportunities

Practical tips from Jakob

